7 Science-Backed Ways to Support Your Pineal Gland Health

by Jennifer Sanchez

Published on May 27, 2024 8:00 AM EST I 5 Minute Read

We may earn revenue from the products available on this page and participate in affiliate programs.

The pineal gland, a small endocrine gland in the brain, plays a crucial role in regulating our sleep-wake cycles and producing melatonin. While there's still much to learn about this tiny organ, research suggests that maintaining its health can contribute to better sleep, mood, and overall well-being. In this article, we'll explore seven evidence-based ways to support your pineal gland health.

The pineal gland is sensitive to light, which influences our body's ability to produce melatonin. By optimizing your sleep environment, you can support its natural rhythms.

a. Create a dark sleeping space

b. Establish a consistent sleep schedule

c. Limit blue light exposure before bedtime​

Stay Hydrated

Regular medical check-ups can help identify and address any potential issues that might affect the pineal gland's health.

a. Discuss any sleep concerns with your doctor

b. Stay up-to-date on recommended health screenings

c. Consider hormonal health assessments

Prioritize Regular Check-ups and Health Screenings

Sunlight plays a crucial role in regulating our circadian rhythm, which are closely tied to pineal gland function.

a. Understand the circadian rhythm-sunlight connection

b. Practice safe sun exposure

c. Consider light therapy for those with limited sunlight access

a. Choose natural personal care products

b. Filter your drinking water

c. Opt for organic produce when possible

A balanced diet can provide essential nutrients that support pineal gland function and overall brain health.

a. Consume foods rich in tryptophan

b. Include melatonin-containing foods

c. Ensure adequate vitamin D intake

Adequate hydration is crucial for overall brain function, including the pineal gland.

a. Understand the importance of proper hydration

b. Calculate your daily water needs

c. Tips for increasing water intake

Practice Stress-Reduction Techniques

Chronic stress can negatively impact various aspects of health, including pineal gland function. Learning how to manage stress can support overall well-being.

a. Explore meditation and mindfulness

b. Try yoga or tai chi

c. Engage in regular physical exercise

Limit Exposure to Environmental Toxins

Get Regular Sunlight Exposure

While more research is needed, some studies suggest that certain environmental toxins may affect pineal gland function. Taking steps to reduce exposure can be part of an overall healthy lifestyle.​

Optimize Your Sleep Environment

Maintain a Balanced Diet

References

1. Macchi MM, Bruce JN. Human pineal physiology and functional significance of melatonin. Front Neuroendocrinol. 2004;25:177–195.

2. Nichols DE. N,N-dimethyltryptamine and the pineal gland: Separating fact from myth. J Psychopharmacol. 2018;32:30–36. 

3. Pende N. Endocrinologia. Vol. 1. Bues Aires: Salvat Editores, S.A; 1937.  

4. López-Muñoz F, Molina JD, Rubio G, Alamo C. An historical view of the pineal gland and mental disorders. J Clin Neurosci. 2011;18:1028–1037.  

5. Pfeffer M, Korf HW, Wicht H. Synchronizing effects of melatonin on diurnal and circadian rhythms. Gen Comp Endocrinol. 2018;258:215–221.  

6. Quay WB. Circadian rhytm in rat pineal serotonin and its modification of estrous cycle and photoperiod. Gen Comp Endocrinol. 1963;3:473–479.  

7. Quay WB. Circadian and estrous rhythms in pineal melatonin and 5-hydroxy indole-3-acetic acid. Proc Soc Exp Biol Med. 1964;115:710–713.  

8. Lerner AB, Case JD, Takahashi Y, Lee TH, Mori W. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J Am Chem Soc.  

9. Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, et al. A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res. 2011;51:17–43. 

10. Bigelow L. Some effects of aqueos pineal extract administration on schizophrenia symptoms. In: Altschule MD, editor. Frontiers on pineal physiology. Cambridge: Mild Press; 1975. pp. 226–263.  

11. Barker SA, Borjigin J, Lomnicka I, Strassman R. LC/MS/MS analysis of the endogenous dimethyltryptamine hallucinogens, their precursors, and major metabolites in rat pineal gland microdialysate. Biomed Chromatogr. 2013;27:1690–1700.  

12. Barker SA. N, N-Dimethyltryptamine (DMT), an Endogenous Hallucinogen: Past, Present, and Future Research to Determine Its Role and Function. Front Neurosci. 2018;12:536.  

13. Jacob MS, Presti DE. Endogenous psychoactive tryptamines reconsidered: an anxiolytic role for dimethyltryptamine. Med Hypotheses. 2005;64:930–937.  

14. Fontanilla D, Johannessen M, Hajipour AR, Cozzi NV, Jackson MB, Ruoho AE. The hallucinogen N,N-dimethyltryptamine (DMT) is an endogenous sigma-1 receptor regulator. Science. 2009;323:934–937.  

15. Greenstein B, Greenstein A. Thieme Flexibook. Stuttgart – New York: 2000. Color Atlas of Neuroscience: Neuroanatomy and Neurophysiology.  

16. Erlich SS, Apuzzo ML. The pineal gland: anatomy, physiology, and clinical significance. J Neurosurg. 1985;63:321–341.  

17. Tan DX, Xu B, Zhou X, Reiter RJ. Pineal Calcification, Melatonin Production, Aging, Associated Health Consequences and Rejuvenation of the Pineal Gland. Molecules. 2018;23(2) pii: E301.  

18. Hasegawa A, Mori W. Morphometry of the human pineal gland: relationship to the adrenal cortex. Acta Pathol Jpn. 1980;30:407–410. 

19. Goldman BD, Darrow JM. The pineal gland and mammalian photoperiodism. Neuroendocrinology. 1983;37:386–396. 

20. Güney M, Ayranci E, Kaplan S. Development and histology of the pineal gland in animals. Step by Step Experimental Pinealectomy Techniques in Animals for Researchers. 2013. pp. 33–52. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84892029501&partnerID=40&md5=1f1127b611e6f96b16dce0d94021aa8d.

21. Pevet P. Anatomy of the pineal gland of mammals. In: Relkin R, editor. The Pineal Gland. New York: Elsevier; 1983. pp. 1–75.  

22. Moore RY, Klein DC. Visual pathways and the central neural control of a circadian rhythm in pineal serotonin N-acetyltransferase activity. Brain Res. 1974;71:17–33. 

23. Cardinali DP, Vacas MI, Gejman PV, Pisarev MA, Barontini M, Boado RJ, et al. The sympathetic superior cervical ganglia as “little neuroendocrine brains” Acta Physiol Lat Am. 1983;33:205–221.  

24. Arunkumar KG, Jayanthi AA, Indira CK, Girijamony VK. Age- and Sex- Related Changes in Pineal Gland: A Morphological and Histological Study, American Journal of Internal Medicine. Special Issue:Toxicology. 2015;3:10–13.  

25. Golan J, Torres K, Staśkiewicz GJ, Opielak G, Maciejewski R. Morphometric parameters of the human pineal gland in relation to age, body weight and height. Folia Morphol (Warsz) 2002;61:111–113. 

26. Ostrin LA. Ocular and systemic melatonin and the influence of light exposure. Clin Exp Optom. 2019;102:99–108.  

27. Lerner AB, Case JD. Pigment cell regulatory factors. J Invest Dermatol. 1959;32:211–221. 

28. Lewy AJ, Wehr TA, Goodwin FK, Newsome DA, Markey SP. Light suppresses melatonin secretion in humans. Science. 1980;210:1267–1269.  

29. Smith JA, O’Hara J, Schiff AA. Altered diurnal serum melatonin rhythm in blind men. Lancet. 1981;2:933. 

30. Reuss S, Vollrath L. Electrophysiological properties of rat pinealocytes: evidence for circadian and ultradian rhythms. Exp Brain Res. 1984;55:455–461.  

31. Reiter RJ. The pineal and its hormones in the control of reproduction in mammals. Endocr Rev. 1980;1:109–131.  

32. Ralph CL. Evolution of pineal control of endocrine function in lower vertebrates. Am Zoologist. 1983;23:597–605.  

33. Kawashima K, Miwa Y, Fujimoto K, Oohata H, Nishino H, Koike H. Antihypertensive action of melatonin in the spontaneously hypertensive rat. Clin Exp Hypertens A. 1987;9:1121–1131. 

34. Adrendt J, Wetterberg L, Heyden T, Sizonenko PC, Paunier L. Radioimmunoassay of melatonin: human serum and cerebrospinal fluid. Horm Res. 1977;8:65–75.  

35. Wurtman RJ, Moskowitz MA. The pineal organ (first of two parts) N Engl J Med. 1977;296:1329–1333.  

36. Wurtman RJ, Moskowitz MA. The pineal organ (Second of two parts) N Engl J Med. 1977;296:1383–1386. 

37. Lacoste V, Wetterberg L. Individual variations of rhythms in morning and evening types with special emphasis on seasonal differences. In: Wetterberg L, editor. Light and Biological Rhythms in Man. Pergamon Press; New York: 1993. pp. 287–304.  

38. Vriend J, Gibbs FP. Coincidence of counter-antigonadal and counter-antithyroid action of melatonin administration via the drinking water in male golden hamsters. Life Sci. 1984;34:617–623.  

39. Sinha BR, Chattopadhyay R, Dasgupta M, Chakraborty S. A comparative study indicates methimazole induced chemical hypothyroidism causes inhibition of pineal gland karyomorphology in three different species of animals. International Journal of Pure and Applied Zoology. 2014;2:84–94.  

40. Holmes SW, Sugden D. Proceedings: The effect of melatonin on pinealectomy-induced hypertension in the rat. Br J Pharmacol. 1976;56:360P–361P.  

41. Chuang JI, Chen SS, Lin MT. Melatonin decreases brain serotonin release, arterial pressure and heart rate in rats. Pharmacology. 1993;47:91–97. 

42. Porfirio MC, Gomes de Almeida JP, Stornelli M, Giovinazzo S, Purper-Ouakil D, Masi G. Can melatonin prevent or improve metabolic side effects during antipsychotic treatments? Neuropsychiatr Dis Treat. 2017;13:2167–2174.  

43. Markus RP, Fernandes PA, Kinker GS, da Silveira Cruz-Machado S, Marçola M. Immune-pineal axis - acute inflammatory responses coordinate melatonin synthesis by pinealocytes and phagocytes. Br J Pharmacol. 2017 Nov 4; doi: 10.1111/bph.14083. [Epub ahead of print] [PMC free article]  

44. Caroleo MC, Frasca D, Nisticó G, Doria G. Melatonin as immunomodulatory in immunodeficient mice. Immunopharmacology. 1992;23:81–89.  

45. Reiter RJ. Cytoprotective properties of melatonin: presumed association with oxidative damage and aging. Nutrition. 1998;14:691–696.  

46. Reiter RJ, Pablos MI, Agapito TT, Guerrero JM. Melatonin in the context of the free radical theory of aging. Ann N Y Acad Sci. 1996;786:362–378.  

47. Reiter RJ, Melchiorri D, Sewerynek E, Poeggeler B, Barlow-Walden L, Chuang J, et al. A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res. 1995;18:1–11.  

48. Bahna SG, Niles LP. Epigenetic regulation of melatonin receptors in neuropsychiatric disorders. Br J Pharmacol. 2017 Oct 2; doi: 10.1111/bph.14058. 

49. Karasek M, Pawlikowski M. Antiproliferative effects of melatonin and CGP 52608. Biol Signals Recept. 1999;8:75–78. 

50. Dagnino-Subiabre A, Orellana JA, Carmona-Fontaine C, Montiel J, Díaz-Velíz G, Serón-Ferré M, et al. Chronic stress decreases the expression of sympathetic markers in the pineal gland and increases plasma melatonin concentration in rats. J Neurochem. 2006;97:1279–1287.  

51. Alicelebić S, Mornjaković Z, Susko I, Cosović E, Beganović-Petrović A. The role of pineal gland and exogenous melatonin on the irradiation stress response of suprarenal gland. Bosn J Basic Med Sci. 2006;6:18–21. 

52. Koshy S, Vettivel SK. Varying appearances of calcification in human pineal gland: a light microscopic study. J Anat Soc India. 2001;50:17–18. Available from: papers3://publication/uuid/82501519-B706-493F-A8E6-5F116E93A7BB.  

53. Tapp E. The histology and pathology of the human pineal gland. Prog Brain Res. 1979;52:481–500. 

54. Sigurdardottir LG, Markt SC, Sigurdsson S, Aspelund T, Fall K, Schernhammer E, et al. Pineal gland volume assessed by MRI and its correlation with 6-Sulfatoxymelatonin levels among older men. J Biol Rhytms. 2016;31:461–469. 

55. Nölte I, Lütkhoff AT, Stuck BA, Lemmer B, Schredl M, Findeisen P, et al. Pineal volume and circadian melatonin profile in healthy volunteers: an interdisciplinary approach. J Magn Reson Imaging. 2009;30:499–505.  

56. Taraszewska A, Matyja E, Koszewski W, Zaczyński A, Bardadin K, Czernicki Z. Asymptomatic and symptomatic glial cysts of the pineal gland. Folia Neuropathol. 2008;46:186–195. 

57. Jouvet A, Saint-Pierre G, Fauchon F, Privat K, Bouffet E, Ruchoux MM, et al. Pineal parenchymal tumors: a correlation of histological features with prognosis in 66 cases. Brain Pathol. 2000;10:49–60. 

58. Klein MT, Teitler M. Distribution of 5-ht(1E) receptors in the mammalian brain and cerebral vasculature: an immunohistochemical and pharmacological study. Br J Pharmacol. 2012;166:1290–1302. 

59. Doyle AJ, Anderson GD. Physiologic calcification of the pineal gland in children on computed tomography: prevalence, observer reliability and association with choroid plexus calcification. Acad Radiol. 2006;13:822–826.  

60. Whitehead MT, Oh C, Raju A, Choudhri AF. Physiologic pineal region, choroid plexus, and dural calcifications in the first decade of life. AJNR Am J Neuroradiol. 2015;36:575–580. 

61. Afroz H, Asm N, Ara S, Rahman M, Ha P. Microscopic study on the shape of pineal calcification of Bangladeshi cadavers. J Dhaka Med Coll. 2013;22:151–155. 

62. Galliani I, Frank F, Gobbi P, Giangaspero F, Falcieri E. Histochemical and ultrastructural study of human pineal gland in the course of aging. J Submicrosc Cytol Pathol. 1989;21:571–578.  

63. Baconnier S, Lang SB, Polomska M, Hilczer B, Berkovic G, Meshulam G. Calcite microcrystals in the pineal gland of the human brain: first physical and chemical studies. Bioelectromagnetics. 2002;23:488–495. 

64. Pu Y, Mahankali S, Hou J, Li J, Lancaster JL, Gao JH, et al. High prevalence of pineal cysts in healthy adults demonstrated by high-resolution, noncontrast brain MR imaging. AJNR Am J Neuroradiol. 2007;28:1706–1709. 

65. Ramji S, Touska P, Rich P, MacKinnon AD. Normal neuroanatomical variants that may be misinterpreted as disease entities. Clin Radiol. 2017;72:810–825. 

66. Fetell MR, Bruce JN, Burke AM, Cross DT, Torres RA, Powers JM, et al. Non-neoplastic pineal cysts. Neurology. 1991;41:1034–1040.  

67. Jiménez-Heffernan JA, Bárcena C, Agra C, Asuncion A. Cytologic features of the normal pineal gland of adults. Diagn Cytopathol. 2015;43:642–645. 

68. Mitchell TN, Free SL, Williamson KA, Stevens JM, Churchill AJ, Hanson IM, et al. Polymicrogyria and absence of pineal gland due to PAX6 mutation. Ann Neurol. 2003;53:658–663.  

69. Al-Owain M, Al-Zahrani J, Al-Bakheet A, Abudheim N, Al-Younes B, Aldhalaan H, et al. A novel syndrome of abnormal striatum and congenital cataract: evidence for linkage to chromosomes 11. Clin Genet. 2013;84:258–264.  

70. Cox MA, Davis M, Voin V, Shoja M, Oskouian RJ, Loukas M, et al. Pineal Gland Agenesis: Review and Case Illustration. Cureus. 2017;9:e1314.  

71. Raleigh DR, Solomon DA, Lloyd SA, Lazar A, Garcia MA, Sneed PK, et al. Histopathologic review of pineal parenchymal tumors identifies novel morphologic subtypes and prognostic factors for outcome. Neuro Oncol. 2017;19:78–88.  

72. Poulgrain K, Gurgo R, Winter C, Ong B, Lau Q. Papillary tumour of the pineal region. J Clin Neurosci. 2011;18:1007–1017.  

73. Treumann S, Buesen R, Gröters S, Eichler JO, van Ravenzwaay B. Occurrence of Pineal Gland Tumors in Combined Chronic Toxicity/Carcinogenicity Studies in Wistar Rats. Toxicol Pathol. 2015;43:838–843.  

74. Yamane Y, Mena H, Nakazato Y. Immunohistochemical characterization of pineal parenchymal tumors using novel monoclonal antibodies to the pineal body. Neuropathology. 2002;22:66–76. 

75. Naqvi S, Rupareliya C, Shams A, Hameed M, Mahuwala Z, Giyanwani PR. Pineal Gland Tumor but not Pinealoma: A Case Report. Cureus. 2017;9:e1576.  

76. Vasiljevic A, Szathmari A, Champier J, Fèvre-Montange M, Jouvet A. Histopathology of pineal germ cell tumors. Neurochirurgie. 2015;61:130–137.  

77. Nagasawa DT, Lagman C, Sun M, Yew A, Chung LK, Lee SJ, et al. Pineal germ cell tumors: Two cases with review of histopathologies and biomarkers. J Clin Neurosci. 2017;38:23–31 

78. Sandyk R, Kay SR. The relationship of pineal calcification and melatonin secretion to the pathophysiology of tardive dyskinesia and Tourette’s syndrome. Int J Neurosci. 1991;58:215–247.  

79. Mittal VA, Karlsgodt K, Zinberg J, Cannon TD, Bearden CE. Identification and treatment of a pineal region tumor in an adolescent with prodromal psychotic symptoms. Am J Psychiatry. 2010;167:1033–1037. 

80. Shen HW, Jiang XL, Winter JC, Yu AM. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmaco-kinetics, drug interactions, and pharmacological actions. Curr Drug Metab. 2010;11:659–666. 

81. Antón-Tay F, Díaz J, Fernández-Guardiola A. On the effect of melatonin upon human brain. Its possible therapeutic implications. Life Sci I. 1971;10:841–850.  

82. Findikli E, Inci MF, Gökçe M, Findikli HA, Altun H, Karaaslan MF. Pineal gland volume in schizophrenia and mood disorders. Psychiatr Danub. 2015;27:153–158.  

83. Matsuoka T, Imai A, Fujimoto H, Kato Y, Shibata K, Nakamura K, et al. Reduced Pineal Volume in Alzheimer Disease: A Retrospective Cross-sectional MR Imaging Study. Radiology. 2018;286:239–248.  

84. Madhusoodanan S, Ting MB, Farah T, Ugur U. Psychiatric aspects of brain tumors: A review. World J Psychiatry. 2015;5:273–285. 

85. Bayliss CR, Bishop NL, Fowler RC. Pineal gland calcification and defective sense of direction. Br Med J (Clin Res Ed) 1985;291:1758–1759.  

86. Kurtulus Dereli A, Demırci GN, Dodurga Y, Özbal S, Cankurt U, Boz B, et al. Evaluation of human pineal gland acetylserotonin O-methyltransferase immunoreactivity in suicide: A preliminary study. Med Sci Law. 2018;58:233–258. [PubMed]